Search results for "cavity quantum electrodynamics"

showing 10 items of 65 documents

Probing mechanical quantum coherence with an ultracold-atom meter

2011

We propose a scheme to probe quantum coherence in the state of a nano-cantilever based on its magnetic coupling (mediated by a magnetic tip) with a spinor Bose Einstein condensate (BEC). By mapping the BEC into a rotor, its coupling with the cantilever results in a gyroscopic motion whose properties depend on the state of the cantilever: the dynamics of one of the components of the rotor angular momentum turns out to be strictly related to the presence of quantum coherence in the state of the cantilever. We also suggest a detection scheme relying on Faraday rotation, which produces only a very small back-action on the BEC and it is thus suitable for a continuous detection of the cantilever'…

Angular momentumCantileverRadiation-pressureResonatorNanocantileverFOS: Physical sciences01 natural sciencesSettore FIS/03 - Fisica Della Materia010305 fluids & plasmaslaw.inventionSpinlawUltracold atomQuantum mechanics0103 physical sciencesMicromirrorOptical cavity010306 general physicsQuantumCondensed Matter::Quantum GasesPhysicsQuantum PhysicsBose-Einstein condensateCondensed Matter::OtherCavity quantum electrodynamicsBose Einstein Condensate Atomic physics quantum measurementOptomechanicsAtomic and Molecular Physics and OpticsComputer Science::OtherDynamicsQuantum Gases (cond-mat.quant-gas)Quantum Physics (quant-ph)Condensed Matter - Quantum GasesStateBose–Einstein condensateCoherence (physics)Physical Review A
researchProduct

Generation of multiphoton Fock states by bichromatic adiabatic passage: Topological analysis

2004

We propose a robust scheme to generate multi-photon Fock states in an atom-maser-cavity system using adiabatic passage techniques and topological properties of the dressed eigenenergy surfaces. The mechanism is an exchange of photons from the maser field into the initially empty cavity by bichromatic adiabatic passage. The number of exchanged photons depends on the design of the adiabatic dynamics through and around the conical intersections of dressed eigenenergy surfaces.

Condensed Matter::Quantum GasesPhysicsQuantum PhysicsPhoton[ PHYS.QPHY ] Physics [physics]/Quantum Physics [quant-ph]Field (physics)Cavity quantum electrodynamicsFOS: Physical sciencesPhysics::OpticsConical surfaceTopologyAtomic and Molecular Physics and Opticslaw.inventionFock spacelawQuantum mechanicsPhysics::Atomic PhysicsMaserQuantum Physics (quant-ph)Adiabatic processTopology (chemistry)Physical Review A
researchProduct

Single-molecule controlled emission in planar plasmonic cavities

2014

International audience; We study the fluorescence emission from single dye molecules in coplanar plasmonic cavities composed of a thin gold film surrounded by two in-plane surface plasmon Bragg mirrors. We first discuss the effect of the presence of Bragg mirrors on the radiation diagram of surface plasmon coupled emission. Then, we investigate the role of the planar cavity size by single-molecule fluorescence lifetime imaging. Experimental data are compared to numerical simulations of the decay rates calculated as a function of the molecule orientation and position within the cavity. The creation of new decay channels by coupling to the cavity modes is also discussed. We measure a plasmoni…

CouplingMaterials sciencebusiness.industrySurface plasmonCavity quantum electrodynamicstechnology industry and agriculturePhysics::Optics02 engineering and technology[ PHYS.COND.CM-GEN ] Physics [physics]/Condensed Matter [cond-mat]/Other [cond-mat.other]Radiation021001 nanoscience & nanotechnologyCondensed Matter Physics01 natural sciencesFluorescenceElectronic Optical and Magnetic MaterialsPlanar[PHYS.COND.CM-GEN]Physics [physics]/Condensed Matter [cond-mat]/Other [cond-mat.other]0103 physical sciencesRadiative transferOptoelectronics010306 general physics0210 nano-technologybusinessPlasmon
researchProduct

Purcell factor for 3D- dipolar emitter coupling to 2D- plasmonic waveguides

2011

We theoretically investigate spontaneous emission of a quantum (3D) dipolar emitter located near a (2D) plasmonic waveguide of arbitrary form. The channels into which emitter couples (plasmon, scattering, electron-hole pairs creation) are well identified.

CouplingPhysicsScatteringbusiness.industrySurface plasmonCavity quantum electrodynamicsPhysics::OpticsSurface plasmon polaritonPhysics::Accelerator PhysicsOptoelectronicsSpontaneous emissionbusinessPlasmonCommon emitter2011 Conference on Lasers and Electro-Optics Europe and 12th European Quantum Electronics Conference (CLEO EUROPE/EQEC)
researchProduct

Spontaneous emission of an atom near an oscillating mirror

2019

We investigate the spontaneous emission of one atom placed near an oscillating reflecting plate. We consider the atom modeled as a two-level system, interacting with the quantum electromagnetic field in the vacuum state, in the presence of the oscillating mirror. We suppose that the plate oscillates adiabatically, so that the time-dependence of the interaction Hamiltonian is entirely enclosed in the time-dependent mode functions, satisfying the boundary conditions at the plate surface, at any given time. Using time-dependent perturbation theory, we evaluate the transition rate to the ground-state of the atom, and show that it depends on the time-dependent atom-plate distance. We also show t…

Electromagnetic fieldPhysics and Astronomy (miscellaneous)General MathematicsSpontaneous emissionVacuum stateFOS: Physical sciences01 natural sciences010305 fluids & plasmassymbols.namesakecavity quantum electrodynamics0103 physical sciencesAtomComputer Science (miscellaneous)Radiative transferSpontaneous emission010306 general physicsQuantumPhysicsQuantum Physicslcsh:MathematicsCavity quantum electrodynamicslcsh:QA1-939Cavity quantum electrodynamicChemistry (miscellaneous)symbolsdynamical environmentsAtomic physicsHamiltonian (quantum mechanics)Quantum Physics (quant-ph)Dynamical environment
researchProduct

Large-photon-number limit and the essential singularity in finite quantum electrodynamics

1976

It is shown that the essential singularity in finite quantum electrodynamics can be located by considering only those diagrams with a large number of photons exchanged in the single-fermion loop, without photons emitted and absorbed on a fermion line. (AIP)

Essential singularityPhysicsQuantum opticsOpen quantum systemPhotonHigh Energy Physics::LatticeQuantum mechanicsQuantum electrodynamicsStochastic electrodynamicsCavity quantum electrodynamicsGauge theoryQuantum field theoryPhysical Review D
researchProduct

An application of the arithmetic euler function to the construction of nonclassical states of a quantum harmonic oscillator

2001

Abstract All quantum superpositions of two equal intensity coherent states exhibiting infinitely many zeros in their Fock distributions are explicitly constructed and studied. Our approach is based on results from number theory and, in particular, on the properties of arithmetic Euler function. The nonclassical nature of these states is briefly pointed out. Some interesting properties are brought to light.

Euler functionCavity quantum electrodynamicsStatistical and Nonlinear PhysicsFock spacesymbols.namesakeNumber theoryQuantum harmonic oscillatorQuantum mechanicssymbolsCoherent statesNonclassical lightArithmeticQuantumMathematical PhysicsMathematicsReports on Mathematical Physics
researchProduct

Extraction of Singlet States from Noninteracting High-Dimensional Spins

2008

We present a scheme for the extraction of singlet states of two remote particles of arbitrary quantum spin number. The goal is achieved through post-selection of the state of interaction mediators sent in succession. A small number of iterations is sufficient to make the scheme effective. We propose two suitable experimental setups where the protocol can be implemented.

FABRY-PEROT-INTERFEROMETERPhysicsQuantum PhysicsSpinsScatteringSmall numberExtraction (chemistry)entanglement generation; quantum map; scatteringCavity quantum electrodynamicsFOS: Physical sciencesGeneral Physics and AstronomyState (functional analysis)Quantum mechanicsSCATTERINGSinglet stateQuantum Physics (quant-ph)Quantum information scienceentanglement generationquantum mapQUANTUMENTANGLEMENT
researchProduct

Cold-Atom-Induced Control of an Optomechanical Device

2010

We consider a cavity with a vibrating end mirror and coupled to a Bose-Einstein condensate. The cavity field mediates the interplay between mirror and collective oscillations of the atomic density. We study the implications of this dynamics and the possibility of an indirect diagnostic. Our predictions can be observed in a realistic setup that is central to the current quest for mesoscopic quantumness.

Field (physics)General Physics and AstronomyFOS: Physical sciencesQuantum entanglementPhysics and Astronomy(all)01 natural sciences010305 fluids & plasmaslaw.invention/dk/atira/pure/subjectarea/asjc/3100lawUltracold atomQuantum mechanics0103 physical sciencesCold Atoms nanodevices entanglement open systemsQuantum information010306 general physicsPhysicsCondensed Matter::Quantum GasesMesoscopic physicsQuantum PhysicsCavity quantum electrodynamicsNonlinear opticsQuantum Gases (cond-mat.quant-gas)Physics::Accelerator PhysicsAtomic physicsCondensed Matter - Quantum GasesQuantum Physics (quant-ph)Bose–Einstein condensate
researchProduct

Teleportation of squeezing: optimization using non-Gaussian resources

2010

We study the continuous-variable quantum teleportation of states, statistical moments of observables, and scale parameters such as squeezing. We investigate the problem both in ideal and imperfect Vaidman-Braunstein-Kimble protocol setups. We show how the teleportation fidelity is maximized and the difference between output and input variances is minimized by using suitably optimized entangled resources. Specifically, we consider the teleportation of coherent squeezed states, exploiting squeezed Bell states as entangled resources. This class of non-Gaussian states includes photon-added and photon-subtracted squeezed states as special cases. At variance with the case of entangled Gaussian re…

GaussianFOS: Physical sciencesQuantum entanglement01 natural sciencesTeleportation010305 fluids & plasmassymbols.namesakeQuantum mechanics0103 physical sciencesStatistical physics010306 general physicsQuantum information sciencePhysicsQuantum PhysicsBell stateCavity quantum electrodynamicsObservableQuantum PhysicsAtomic and Molecular Physics and OpticsCondensed Matter - Other Condensed MattersymbolsQuantum Physics (quant-ph)Quantum teleportationPhysics - OpticsOther Condensed Matter (cond-mat.other)Optics (physics.optics)
researchProduct