Search results for "cavity quantum electrodynamics"
showing 10 items of 65 documents
Probing mechanical quantum coherence with an ultracold-atom meter
2011
We propose a scheme to probe quantum coherence in the state of a nano-cantilever based on its magnetic coupling (mediated by a magnetic tip) with a spinor Bose Einstein condensate (BEC). By mapping the BEC into a rotor, its coupling with the cantilever results in a gyroscopic motion whose properties depend on the state of the cantilever: the dynamics of one of the components of the rotor angular momentum turns out to be strictly related to the presence of quantum coherence in the state of the cantilever. We also suggest a detection scheme relying on Faraday rotation, which produces only a very small back-action on the BEC and it is thus suitable for a continuous detection of the cantilever'…
Generation of multiphoton Fock states by bichromatic adiabatic passage: Topological analysis
2004
We propose a robust scheme to generate multi-photon Fock states in an atom-maser-cavity system using adiabatic passage techniques and topological properties of the dressed eigenenergy surfaces. The mechanism is an exchange of photons from the maser field into the initially empty cavity by bichromatic adiabatic passage. The number of exchanged photons depends on the design of the adiabatic dynamics through and around the conical intersections of dressed eigenenergy surfaces.
Single-molecule controlled emission in planar plasmonic cavities
2014
International audience; We study the fluorescence emission from single dye molecules in coplanar plasmonic cavities composed of a thin gold film surrounded by two in-plane surface plasmon Bragg mirrors. We first discuss the effect of the presence of Bragg mirrors on the radiation diagram of surface plasmon coupled emission. Then, we investigate the role of the planar cavity size by single-molecule fluorescence lifetime imaging. Experimental data are compared to numerical simulations of the decay rates calculated as a function of the molecule orientation and position within the cavity. The creation of new decay channels by coupling to the cavity modes is also discussed. We measure a plasmoni…
Purcell factor for 3D- dipolar emitter coupling to 2D- plasmonic waveguides
2011
We theoretically investigate spontaneous emission of a quantum (3D) dipolar emitter located near a (2D) plasmonic waveguide of arbitrary form. The channels into which emitter couples (plasmon, scattering, electron-hole pairs creation) are well identified.
Spontaneous emission of an atom near an oscillating mirror
2019
We investigate the spontaneous emission of one atom placed near an oscillating reflecting plate. We consider the atom modeled as a two-level system, interacting with the quantum electromagnetic field in the vacuum state, in the presence of the oscillating mirror. We suppose that the plate oscillates adiabatically, so that the time-dependence of the interaction Hamiltonian is entirely enclosed in the time-dependent mode functions, satisfying the boundary conditions at the plate surface, at any given time. Using time-dependent perturbation theory, we evaluate the transition rate to the ground-state of the atom, and show that it depends on the time-dependent atom-plate distance. We also show t…
Large-photon-number limit and the essential singularity in finite quantum electrodynamics
1976
It is shown that the essential singularity in finite quantum electrodynamics can be located by considering only those diagrams with a large number of photons exchanged in the single-fermion loop, without photons emitted and absorbed on a fermion line. (AIP)
An application of the arithmetic euler function to the construction of nonclassical states of a quantum harmonic oscillator
2001
Abstract All quantum superpositions of two equal intensity coherent states exhibiting infinitely many zeros in their Fock distributions are explicitly constructed and studied. Our approach is based on results from number theory and, in particular, on the properties of arithmetic Euler function. The nonclassical nature of these states is briefly pointed out. Some interesting properties are brought to light.
Extraction of Singlet States from Noninteracting High-Dimensional Spins
2008
We present a scheme for the extraction of singlet states of two remote particles of arbitrary quantum spin number. The goal is achieved through post-selection of the state of interaction mediators sent in succession. A small number of iterations is sufficient to make the scheme effective. We propose two suitable experimental setups where the protocol can be implemented.
Cold-Atom-Induced Control of an Optomechanical Device
2010
We consider a cavity with a vibrating end mirror and coupled to a Bose-Einstein condensate. The cavity field mediates the interplay between mirror and collective oscillations of the atomic density. We study the implications of this dynamics and the possibility of an indirect diagnostic. Our predictions can be observed in a realistic setup that is central to the current quest for mesoscopic quantumness.
Teleportation of squeezing: optimization using non-Gaussian resources
2010
We study the continuous-variable quantum teleportation of states, statistical moments of observables, and scale parameters such as squeezing. We investigate the problem both in ideal and imperfect Vaidman-Braunstein-Kimble protocol setups. We show how the teleportation fidelity is maximized and the difference between output and input variances is minimized by using suitably optimized entangled resources. Specifically, we consider the teleportation of coherent squeezed states, exploiting squeezed Bell states as entangled resources. This class of non-Gaussian states includes photon-added and photon-subtracted squeezed states as special cases. At variance with the case of entangled Gaussian re…